• 0 Posts
  • 7 Comments
Joined 1 year ago
cake
Cake day: June 20th, 2023

help-circle
  • Odin

    When I read the problem description I expected the input to also be 2 digit numbers. When I looked at it I just had to say “huh.”

    Second part I think you definitely have to do in reverse (edit: if you are doing a linear search for the answer), as that allows you to nope out as soon as you find a match, whereas with doing it forward you have to keep checking just in case.

    Formatted code

    package day5
    
    import "core:fmt"
    import "core:strings"
    import "core:slice"
    import "core:strconv"
    
    Range :: struct {
        dest: int,
        src: int,
        range: int,
    }
    
    Mapper :: struct {
        ranges: []Range,
    }
    
    parse_range :: proc(s: string) -> (ret: Range) {
        rest := s
    
        parseLen := -1
    
        destOk: bool
        ret.dest, destOk = strconv.parse_int(rest, 10, &parseLen)
        rest = strings.trim_left_space(rest[parseLen:])
    
        srcOk: bool
        ret.src, srcOk = strconv.parse_int(rest, 10, &parseLen)
        rest = strings.trim_left_space(rest[parseLen:])
    
        rangeOk: bool
        ret.range, rangeOk = strconv.parse_int(rest, 10, &parseLen)
    
        return
    }
    
    parse_mapper :: proc(ss: []string) -> (ret: Mapper) {
        ret.ranges = make([]Range, len(ss)-1)
        for s, i in ss[1:] {
            ret.ranges[i] = parse_range(s)
        }
    
        return
    }
    
    parse_mappers :: proc(ss: []string) -> []Mapper {
        mapsStr := make([dynamic][]string)
        defer delete(mapsStr)
    
        restOfLines := ss
        isLineEmpty :: proc(s: string)->bool {return len(s)==0}
    
        for i, found := slice.linear_search_proc(restOfLines, isLineEmpty); 
            found; 
            i, found  = slice.linear_search_proc(restOfLines, isLineEmpty) {
            
            append(&mapsStr, restOfLines[:i])
            restOfLines = restOfLines[i+1:]
        }
        append(&mapsStr, restOfLines[:])
    
        return slice.mapper(mapsStr[1:], parse_mapper)
    }
    
    apply_mapper :: proc(mapper: Mapper, num: int) -> int {
        for r in mapper.ranges {
            if num >= r.src && num - r.src < r.range do return num - r.src + r.dest
        }
    
        return num
    }
    
    p1 :: proc(input: []string) {
        maps := parse_mappers(input)
        defer {
            for m in maps do delete(m.ranges)
            delete(maps)
        }
    
        restSeeds := input[0][len("seeds: "):]
        min := 0x7fffffff
    
        for len(restSeeds) > 0 {
            seedLen := -1
            seed, seedOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            fmt.print(seed)
            for m in maps {
                seed = apply_mapper(m, seed)
                fmt.print(" ->", seed)
            }
            fmt.println()
    
            if seed < min do min = seed
        }
    
        fmt.println(min)
    }
    
    apply_mapper_reverse :: proc(mapper: Mapper, num: int) -> int {
        for r in mapper.ranges {
            if num >= r.dest && num - r.dest < r.range do return num - r.dest + r.src
        }
    
        return num
    }
    
    p2 :: proc(input: []string) {
        SeedRange :: struct {
            start: int,
            len: int,
        }
    
        seeds := make([dynamic]SeedRange)
        restSeeds := input[0][len("seeds: "):]
    
        for len(restSeeds) > 0 {
            seedLen := -1
            seedS, seedSOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            seedL, seedLOk := strconv.parse_int(restSeeds, 10, &seedLen)
            restSeeds = strings.trim_left_space(restSeeds[seedLen:])
    
            append(&seeds, SeedRange{seedS, seedL})
        }
    
        maps := parse_mappers(input)
        defer {
            for m in maps do delete(m.ranges)
            delete(maps)
        }
    
        for i := 0; true; i += 1 {
            rseed := i
            #reverse for m in maps {
                rseed = apply_mapper_reverse(m, rseed)
            }
    
            found := false
            for sr in seeds {
                if rseed >= sr.start && rseed < sr.start + sr.len {
                    found = true
                    break
                }
            }
            if found {
                fmt.println(i)
                break
            }
        }
    }
    



  • Did this in Odin

    Here’s a tip: if you are using a language / standard library that doesn’t have a set, you can mimic it with a map from your key to a nullary (in this case an empty struct)

    formatted code

    package day3
    
    import "core:fmt"
    import "core:strings"
    import "core:unicode"
    import "core:strconv"
    
    flood_get_num :: proc(s: string, i: int) -> (parsed: int, pos: int) {
        if !unicode.is_digit(rune(s[i])) do return -99999, -1
    
        pos = strings.last_index_proc(s[:i+1], proc(r:rune)->bool{return !unicode.is_digit(r)})
        pos += 1
    
        ok: bool
        parsed, ok = strconv.parse_int(s[pos:])
    
        return parsed, pos
    }
    
    p1 :: proc(input: []string) {
        // wow what a gnarly type
        foundNumSet := make(map[[2]int]struct{})
        defer delete(foundNumSet)
    
        total := 0
    
        for y in 0..


  • I started working on a similar project about a year ago, except I was doing it fully by hand in the vanilla game (journey mode in a blank world), custom 8-bit instruction set, all that. I took an extended break from the project and kept thinking “this idea is so obvious, someone else is gonna do it first and I’m gonna look like a copycat” but not getting around to finishing work on it anyways. I’ll post pictures if anyone is interested, maybe a world download if I can find somewhere to host it.


  • I’m not super familiar with the details of either (as I’ve gotten so used to the AUR having everything I might want), but I can say with some confidence that snap was rolled out in a way that doesn’t do it any favors.

    I have an old laptop that I occasionally boot into to do some stuff, but not super often. After an update, it appeared as though Firefox had forgotten everything; I wasn’t logged in, default start page, all settings reset, etc. I was super confused and mildly annoyed, but I set everything back up anyways. Then a bit later I ran Firefox again and it opened to what it was before the update??? Then I realized there were two installs, one apt and the other snap, and the latter was installed without my permission (or knowledge, maybe apt said in one of its 10k lines it spits out that ‘btw here’s a snap package’ that I was somehow supposed to notice).

    I find containerized packages really nice for things that are very dependant on how the system is setup but are unlikely to get updated if that system changes (either by me not updating it or it just going unmaintained). Firefox is not that though.